Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Meas ; 43(5)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35413698

RESUMO

Objective. The purpose of this research is to develop a new deep learning framework for detecting atrial fibrillation (AFib), one of the most common heart arrhythmias, by analyzing the heart's mechanical functioning as reflected in seismocardiography (SCG) and gyrocardiography (GCG) signals. Jointly, SCG and GCG constitute the concept of mechanocardiography (MCG), a method used to measure precordial vibrations with the built-in inertial sensors of smartphones.Approach. We present a modified deep residual neural network model for the classification of sinus rhythm, AFib, and Noise categories from tri-axial SCG and GCG data derived from smartphones. In the model presented, pre-processing including automated early sensor fusion and spatial feature extraction are carried out using attention-based convolutional and residual blocks. Additionally, we use bidirectional long short-term memory layers on top of fully-connected layers to extract both spatial and spatiotemporal features of the multidimensional SCG and GCG signals. The dataset consisted of 728 short measurements recorded from 300 patients. Further, the measurements were divided into disjoint training, validation, and test sets, respectively, of 481 measurements, 140 measurements, and 107 measurements. Prior to ingestion by the model, measurements were split into 10 s segments with 75 percent overlap, pre-processed, and augmented.Main results. On the unseen test set, the model delivered average micro- and macro-F1-score of 0.88 (0.87-0.89; 95% CI) and 0.83 (0.83-0.84; 95% CI) for the segment-wise classification as well as 0.95 (0.94-0.96; 95% CI) and 0.95 (0.94-0.96; 95% CI) for the measurement-wise classification, respectively.Significance. Our method not only can effectively fuse SCG and GCG signals but also can identify heart rhythms and abnormalities in the MCG signals with remarkable accuracy.


Assuntos
Fibrilação Atrial , Fibrilação Atrial/diagnóstico , Frequência Cardíaca , Humanos , Redes Neurais de Computação , Smartphone , Vibração
2.
Sensors (Basel) ; 21(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207864

RESUMO

We present a novel method for estimating respiratory motion using inertial measurement units (IMUs) based on microelectromechanical systems (MEMS) technology. As an application of the method we consider the amplitude gating of positron emission tomography (PET) imaging, and compare the method against a clinically used respiration motion estimation technique. The presented method can be used to detect respiratory cycles and estimate their lengths with state-of-the-art accuracy when compared to other IMU-based methods, and is the first based on commercial MEMS devices, which can estimate quantitatively both the magnitude and the phase of respiratory motion from the abdomen and chest regions. For the considered test group consisting of eight subjects with acute myocardial infarction, our method achieved the absolute breathing rate error per minute of 0.44 ± 0.23 1/min, and the absolute amplitude error of 0.24 ± 0.09 cm, when compared to the clinically used respiratory motion estimation technique. The presented method could be used to simplify the logistics related to respiratory motion estimation in PET imaging studies, and also to enable multi-position motion measurements for advanced organ motion estimation.


Assuntos
Tomografia por Emissão de Pósitrons , Respiração , Abdome , Humanos , Processamento de Imagem Assistida por Computador , Movimento (Física) , Tórax
3.
Sensors (Basel) ; 19(19)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554282

RESUMO

Dual cardiac and respiratory gating is a well-known technique for motion compensation in nuclear medicine imaging. In this study, we present a new data fusion framework for dual cardiac and respiratory gating based on multidimensional microelectromechanical (MEMS) motion sensors. Our approach aims at robust estimation of the chest vibrations, that is, high-frequency precordial vibrations and low-frequency respiratory movements for prospective gating in positron emission tomography (PET), computed tomography (CT), and radiotherapy. Our sensing modality in the context of this paper is a single dual sensor unit, including accelerometer and gyroscope sensors to measure chest movements in three different orientations. Since accelerometer- and gyroscope-derived respiration signals represent the inclination of the chest, they are similar in morphology and have the same units. Therefore, we use principal component analysis (PCA) to combine them into a single signal. In contrast to this, the accelerometer- and gyroscope-derived cardiac signals correspond to the translational and rotational motions of the chest, and have different waveform characteristics and units. To combine these signals, we use independent component analysis (ICA) in order to obtain the underlying cardiac motion. From this cardiac motion signal, we obtain the systolic and diastolic phases of cardiac cycles by using an adaptive multi-scale peak detector and a short-time autocorrelation function. Three groups of subjects, including healthy controls (n = 7), healthy volunteers (n = 12), and patients with a history of coronary artery disease (n = 19) were studied to establish a quantitative framework for assessing the performance of the presented work in prospective imaging applications. The results of this investigation showed a fairly strong positive correlation (average r = 0.73 to 0.87) between the MEMS-derived (including corresponding PCA fusion) respiration curves and the reference optical camera and respiration belt sensors. Additionally, the mean time offset of MEMS-driven triggers from camera-driven triggers was 0.23 to 0.3 ± 0.15 to 0.17 s. For each cardiac cycle, the feature of the MEMS signals indicating a systolic time interval was identified, and its relation to the total cardiac cycle length was also reported. The findings of this study suggest that the combination of chest angular velocity and accelerations using ICA and PCA can help to develop a robust dual cardiac and respiratory gating solution using only MEMS sensors. Therefore, the methods presented in this paper should help improve predictions of the cardiac and respiratory quiescent phases, particularly with the clinical patients. This study lays the groundwork for future research into clinical PET/CT imaging based on dual inertial sensors.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Análise de Componente Principal
4.
NPJ Digit Med ; 2: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31304385

RESUMO

There is an unmet clinical need for a low cost and easy to use wearable devices for continuous cardiovascular health monitoring. A flexible and wearable wristband, based on microelectromechanical sensor (MEMS) elements array was developed to support this need. The performance of the device in cardiovascular monitoring was investigated by (i) comparing the arterial pressure waveform recordings to the gold standard, invasive catheter recording (n = 18), (ii) analyzing the ability to detect irregularities of the rhythm (n = 7), and (iii) measuring the heartrate monitoring accuracy (n = 31). Arterial waveforms carry important physiological information and the comparison study revealed that the recordings made with the wearable device and with the gold standard device resulted in almost identical (r = 0.9-0.99) pulse waveforms. The device can measure the heart rhythm and possible irregularities in it. A clustering analysis demonstrates a perfect classification accuracy between atrial fibrillation (AF) and sinus rhythm. The heartrate monitoring study showed near perfect beat-to-beat accuracy (sensitivity = 99.1%, precision = 100%) on healthy subjects. In contrast, beat-to-beat detection from coronary artery disease patients was challenging, but the averaged heartrate was extracted successfully (95% CI: -1.2 to 1.1 bpm). In conclusion, the results indicate that the device could be useful in remote monitoring of cardiovascular diseases and personalized medicine.

5.
Sci Rep ; 8(1): 9344, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921933

RESUMO

Cardiac translational and rotational vibrations induced by left ventricular motions are measurable using joint seismocardiography (SCG) and gyrocardiography (GCG) techniques. Multi-dimensional non-invasive monitoring of the heart reveals relative information of cardiac wall motion. A single inertial measurement unit (IMU) allows capturing cardiac vibrations in sufficient details and enables us to perform patient screening for various heart conditions. We envision smartphone mechanocardiography (MCG) for the use of e-health or telemonitoring, which uses a multi-class classifier to detect various types of cardiovascular diseases (CVD) using only smartphone's built-in internal sensors data. Such smartphone App/solution could be used by either a healthcare professional and/or the patient him/herself to take recordings from their heart. We suggest that smartphone could be used to separate heart conditions such as normal sinus rhythm (SR), atrial fibrillation (AFib), coronary artery disease (CAD), and possibly ST-segment elevated myocardial infarction (STEMI) in multiclass settings. An application could run the disease screening and immediately inform the user about the results. Widespread availability of IMUs within smartphones could enable the screening of patients globally in the future, however, we also discuss the possible challenges raised by the utilization of such self-monitoring systems.


Assuntos
Eletrocardiografia/métodos , Monitorização Fisiológica/métodos , Smartphone , Adulto , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/diagnóstico por imagem , Doenças Cardiovasculares/diagnóstico por imagem , Doença da Artéria Coronariana/diagnóstico por imagem , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Adulto Jovem
6.
Phys Med Biol ; 62(20): 8080-8101, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28880843

RESUMO

Positron emission tomography (PET) is a non-invasive imaging technique which may be considered as the state of art for the examination of cardiac inflammation due to atherosclerosis. A fundamental limitation of PET is that cardiac and respiratory motions reduce the quality of the achieved images. Current approaches for motion compensation involve gating the PET data based on the timing of quiescent periods of cardiac and respiratory cycles. In this study, we present a novel gating method called microelectromechanical (MEMS) dual gating which relies on joint non-electrical sensors, i.e. tri-axial accelerometer and gyroscope. This approach can be used for optimized selection of quiescent phases of cardiac and respiratory cycles. Cardiomechanical activity according to echocardiography observations was investigated to confirm whether this dual sensor solution can provide accurate trigger timings for cardiac gating. Additionally, longitudinal chest motions originating from breathing were measured by accelerometric- and gyroscopic-derived respiratory (ADR and GDR) tracking. The ADR and GDR signals were evaluated against Varian real-time position management (RPM) signals in terms of amplitude and phase. Accordingly, high linear correlation and agreement were achieved between the reference electrocardiography, RPM, and measured MEMS signals. We also performed a Ge-68 phantom study to evaluate possible metal artifacts caused by the integrated read-out electronics including mechanical sensors and semiconductors. The reconstructed phantom images did not reveal any image artifacts. Thus, it was concluded that MEMS-driven dual gating can be used in PET studies without an effect on the quantitative or visual accuracy of the PET images. Finally, the applicability of MEMS dual gating for cardiac PET imaging was investigated with two atherosclerosis patients. Dual gated PET images were successfully reconstructed using only MEMS signals and both qualitative and quantitative assessments revealed encouraging results that warrant further investigation of this method.


Assuntos
Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Movimento/fisiologia , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Artefatos , Eletrocardiografia/métodos , Coração/fisiologia , Humanos , Respiração
7.
Sci Rep ; 7(1): 6823, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754888

RESUMO

Gyrocardiography (GCG) is a new non-invasive technique for assessing heart motions by using a sensor of angular motion - gyroscope - attached to the skin of the chest. In this study, we conducted simultaneous recordings of electrocardiography (ECG), GCG, and echocardiography in a group of subjects consisting of nine healthy volunteer men. Annotation of underlying fiducial points in GCG is presented and compared to opening and closing points of heart valves measured by a pulse wave Doppler. Comparison between GCG and synchronized tissue Doppler imaging (TDI) data shows that the GCG signal is also capable of providing temporal information on the systolic and early diastolic peak velocities of the myocardium. Furthermore, time intervals from the ECG Q-wave to the maximum of the integrated GCG (angular displacement) signal and maximal myocardial strain curves obtained by 3D speckle tracking are correlated. We see GCG as a promising mechanical cardiac monitoring tool that enables quantification of beat-by-beat dynamics of systolic time intervals (STI) related to hemodynamic variables and myocardial contractility.


Assuntos
Determinação da Frequência Cardíaca/métodos , Hemodinâmica , Contração Miocárdica , Rotação , Adulto , Determinação da Frequência Cardíaca/normas , Humanos , Masculino , Pessoa de Meia-Idade , Padrões de Referência
8.
Physiol Meas ; 37(11): 1885-1909, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27681033

RESUMO

Heart rate monitoring helps in assessing the functionality and condition of the cardiovascular system. We present a new real-time applicable approach for estimating beat-to-beat time intervals and heart rate in seismocardiograms acquired from a tri-axial microelectromechanical accelerometer. Seismocardiography (SCG) is a non-invasive method for heart monitoring which measures the mechanical activity of the heart. Measuring true beat-to-beat time intervals from SCG could be used for monitoring of the heart rhythm, for heart rate variability analysis and for many other clinical applications. In this paper we present the Hilbert adaptive beat identification technique for the detection of heartbeat timings and inter-beat time intervals in SCG from healthy volunteers in three different positions, i.e. supine, left and right recumbent. Our method is electrocardiogram (ECG) independent, as it does not require any ECG fiducial points to estimate the beat-to-beat intervals. The performance of the algorithm was tested against standard ECG measurements. The average true positive rate, positive prediction value and detection error rate for the different positions were, respectively, supine (95.8%, 96.0% and ≃0.6%), left (99.3%, 98.8% and ≃0.001%) and right (99.53%, 99.3% and ≃0.01%). High correlation and agreement was observed between SCG and ECG inter-beat intervals (r > 0.99) for all positions, which highlights the capability of the algorithm for SCG heart monitoring from different positions. Additionally, we demonstrate the applicability of the proposed method in smartphone based SCG. In conclusion, the proposed algorithm can be used for real-time continuous unobtrusive cardiac monitoring, smartphone cardiography, and in wearable devices aimed at health and well-being applications.


Assuntos
Determinação da Frequência Cardíaca/métodos , Fenômenos Mecânicos , Processamento de Sinais Assistido por Computador , Algoritmos , Fenômenos Biomecânicos , Humanos , Fatores de Tempo
9.
Int J Biomed Imaging ; 2014: 690124, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120563

RESUMO

Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG), 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG) is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR) data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt). Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET) to obtain motion-free images in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...